

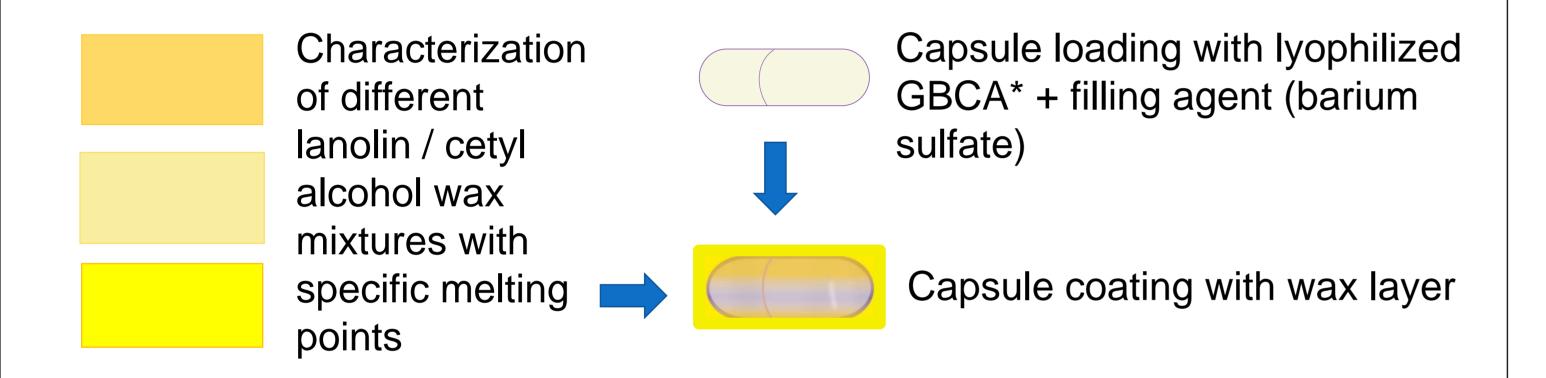
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

KANTONSSPITAL WINTERTHUR

An MRI-Guided HIFU-Triggered Wax-Coated Capsule for Supertargeted Drug Release

Olha Wuerthinger¹, Simon Matoori², Maurizio Roveri², Peter Tiefenboeck², Annatina Romagna¹, Orpheus Kolokythas^{3,4}, Johannes Froehlich^{1,2} ¹Clinical Research Group, Klus-Apotheke, Zurich, Switzerland, ²Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich,

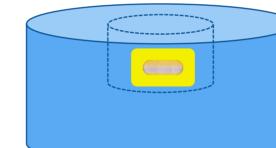
Switzerland, ³Department of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland, ⁴Department of Radiology, University Washington Medical Center, Seattle, WA, USA


Introduction				
Background:	Aim: To develop a supertargeted drug delivery system (DDS) for personalized non-invasive therapy.			
In many diseases (e.g. non-metastatic solid gastrointestinal (GI) tumors, Crohn's disease) current treatment strategies involve systemic administration of drugs.	Property Concept Method			

- Spatially and temporally controlled drug release reduces systemic side effects while simultaneously increasing the drug concentration at the required site.
- Currently no galenic formulations are known which are stable in GI fluids and allow for externally controlled and monitored drug release in the GI tract.

Stimuli-responsive DDS	Thermoresponsive system	Wax-coated capsule
Externally controlled trigger of drug release	Focused rise of temperature	High-intensity focused ultrasound (HIFU)
External monitoring of drug release	Imaging of T1-hyperintense signal due to drug release	Magnetic resonance imaging (MRI) + Gadolinium-based contrast agent (GBCA)

Λ		
	hoc	

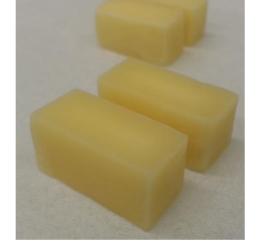

Development of wax-coated capsule:

* 0.2 mL gadoteric acid meglumine 0.5 mmol/mL, Dotarem®

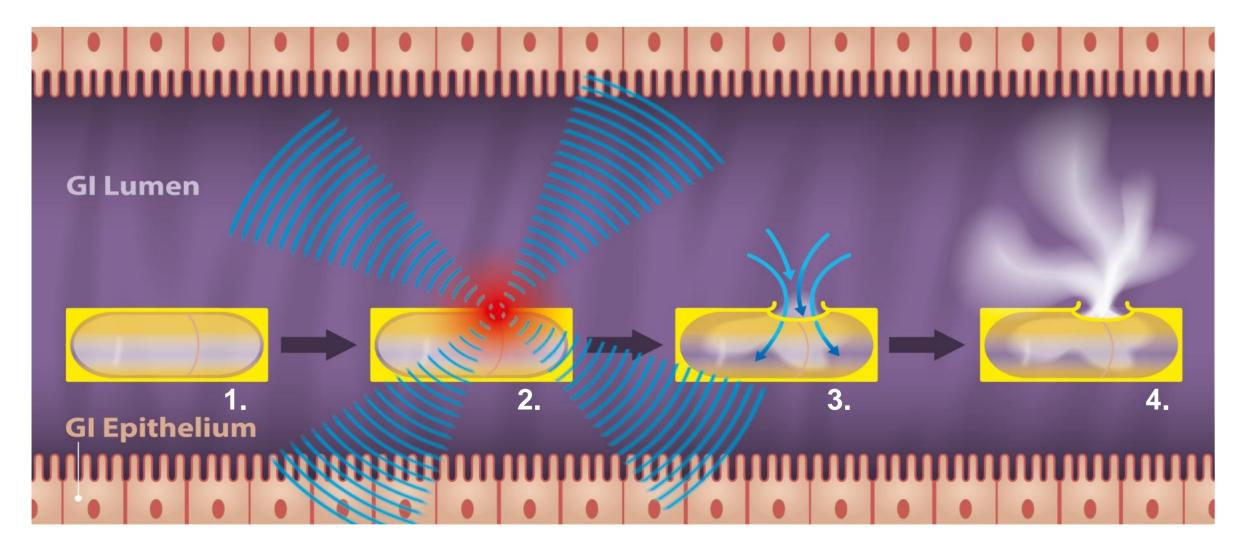
MRI-guided HIFU-triggered drug release:

- MRI-guided HIFU is clinically validated for non-invasive thermal ablation of solid tumors (e.g. breast and prostate cancer).
- Externally triggered highly localized temperature increase.
- Applied HIFU pulse leads to melting of the wax-coating of the capsule: 200 W, 1195 kHz.

Wax-coated capsule in waterfilled cavity of HIFU gel phantom

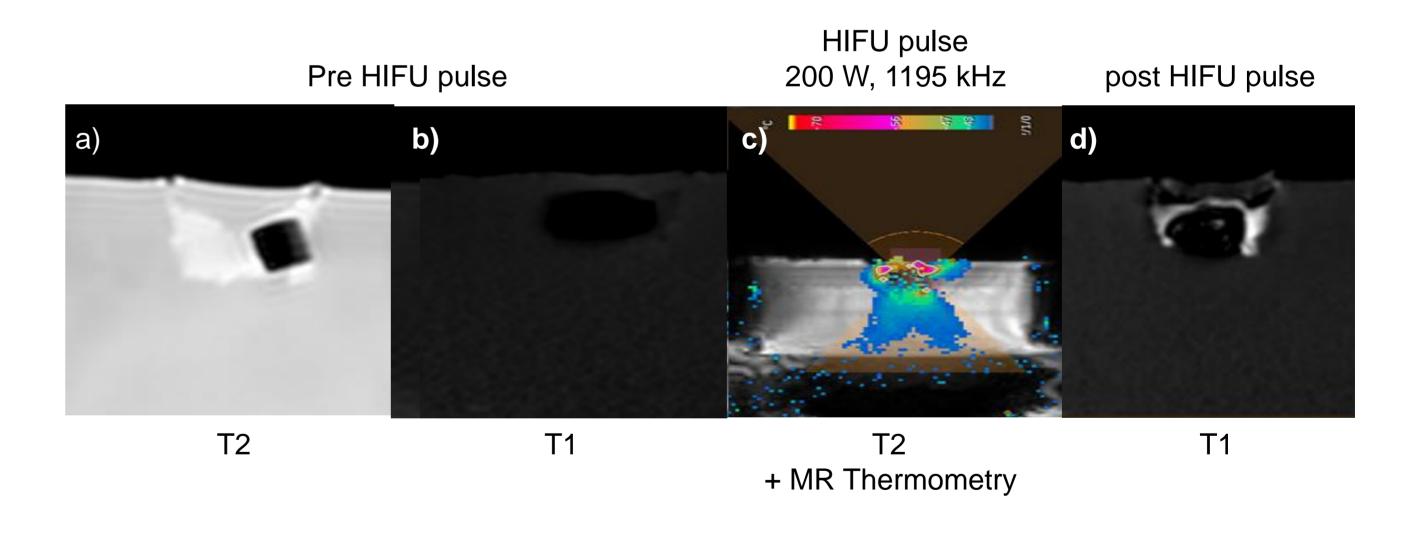


Philips Sonalleve MR-HIFU


Results / Discussion

Development of wax-coated capsule:

- Most suitable wax mixture: lanolin/cetyl alcohol 1:1 (m:m)
 - $mp = 43^{\circ}C$ (stable at body temperature)
 - Highly resistant to simulated gastric and intestinal fluid


Schematic representation of the drug release:

- 1. The wax-coated capsule is resistant to GI-fluids at body temperature \rightarrow no premature release.
- Melting of a focused hole into the wax coating by an external HIFU pulse: 200 W, 1195 kHz.
- 3. Water influx from the GI lumen into the capsule.

MRI-guided HIFU-triggered drug release:

Proof of concept for a novel application of MRI-guided HIFU for supertargeted drug release:

- a) Localization of the capsule due to its T2-hypointensity on T2weighted MR images.
- b) Lack of a T1-hyperintense signal prior to the HIFU pulse shows that **non-hydrated** lyophilized **GBCA** is not T1-hyperintense.
- c) Application of a **HIFU pulse** guided by T2-weighted MRI and temperature monitoring using MR thermometry.
- d) The hyperintense T1 signal on T1-weighted MR images proves **outflux**
- 4. Dissolution and **outflux of GBCA** through the hole in the wax-coating.

and hydration of GBCA after the HIFU pulse.

Conclusion

- Development of a thermoresponsive wax-coated capsule for supertargeted drug release:
 - Stable at physiological conditions (body temperature, simulated GI fluids).
 - Releasing its cargo at T ≥ 43°C, promising non-invasive HIFU application.
- Proof of concept for the novel application of MRI-guided HIFU as an externally controlled heat trigger for drug release.
- Introduction of MRI as a method to monitor the capsule and the release of its cargo.

References

- Bandzar S, Gupta S, Platt MO (2013) *Cellular Immunology* 286:45-52.
- Weiser JR, Saltzman WM (2014) J Control Release 190:664-673.
- McDaniel JR, Dewhirst MW, Chilkoti A (2013) International Journal of Hyperthermia 29(6):501-510.
- Crouzet S, Chapelon JY, Rouvière O, et al. (2014) European Urology 65(5):907-914.
- Merckel LG, Knuttel FM, Deckers R, et al. (2016) European Radiology 26(11):4037-4046.